Maximum Equivalent Stress In ANSYS® Mechanical

This is a solution option for mechanical problems in ANSYS® Mechanical. Here, we explain what is the Maximum Equivalent Stress theory basically, and how to see Max. Equivalent Stress in ANSYS® Mechanical.

ANSYS Workbench for Mechanical Engineering: A Step by step to learn ANSYS Workbench

If you are interested to learn ANSYS® at an engineering level, click on the given link or the ‘Shop Now’ button to check the recommended book by Mechanicalland, from Amazon!

What Is Maximum Equivalent Stress Theory?

Maximum Equivalent Stress theory has a very basic logic. Mx. Equivalent Stress theory, also called distortion energy theory or von-Mises theory states that maximum equivalent stress at stress elements on material or part must be smaller from the yield strength of that used material.

Maximum equivalent stress theory applies to ductile materials. These ductile materials can be aluminum, brass, or steel.

How To Calculate Maximum Equivalent Stress In ANSYS® Mechanical?(Illustrated Expression)

ANSYS® Mechanical provides a solution option called ‘Max. Equivalent Stress’. You can select this option for static problems such as ‘Static Structural’ in ANSYS® Mechanical.

Select ‘Max Equivalent Stress’ in ANSYS® Mechanical.

For example, you defined all of your boundary conditions for your problem in ANSYS® Mechanical like above. To see ‘Max. Equivalent Stress’, right-click on ‘Solution’ then hover your mouse on the ‘Insert’ option, then do the same thing for ‘Stress Tool’ as shown by red arrows above. Then select ‘Max. Equivalent Stress’ as shown in the red box above in ANSYS® Mechanical.

Three options for ‘Stress Tool’.

There are three options for ‘Stress Tool’ in ANSYS® Mechanical. All of these tools mean nearly the same thing but, you can see the formulae of these three tools. Then you can select one of them as above.

Slimit = Maximum yield strength

Fs: Factor Of Safety

Ms: Safety MArgin

SigmaE: Equivalent stress

If there are some kinds of stress amplifiers in your design or parts; consider appropriate stress concentration factors Kt. In most ductile materials, stress concentration zones are not prominent. Failure generally occurs in all cross-sectional areas.


Do not forget to leave your comments and questions about maximum equivalent stress in ANSYS® Mechanical below. Your precious feedbacks are very important to us.

NOTE: All the screenshots and images are used for educational and informative purposes. Images used courtesy of ANSYS, Inc.


Leave a Reply

Your email address will not be published. Required fields are marked *